Задания по математике 5 класс: для занятий дома

Задания по математике 5 класс: для занятий дома

Самостоятельные занятия с ребенком в домашних условиях играют важную роль в процессе обучения. Даже не имея специального образования можно самостоятельно прорешивать с ним примеры и задачи по основным темам, встречающимся в текущем учебном году.

Эти задания вы можете распечатать на принтере.

Как правильно заниматься дома

Для того чтобы занятия действительно приносили пользу, необходимо придерживаться определенных правил, которые помогут сделать день продуктивнее, без утомления ребенка:

  1. Самое главное правило, которое пригодиться не только школьнику, но и любому взрослому человеку, это правильное чередования умственного труда и физического. Необходимо составить распорядок дня так, чтобы после физических нагрузок обязательно шли более спокойные, умственные занятия. Нельзя делать уроки сразу же после возвращения из школы, то же самое касается и дополнительных занятий.
  2. Для решения задач вне школьной программы лучше всего выбирать менее загруженные уроками дни.
  3. Во время занятий нужно убрать все отвлекающие факторы, для того чтобы внимание ребенка не рассеивалось. Если есть возможность решить важные дела перед уроками, то лучше сделать это заранее.
  4. Начинать всегда нужно со сложных задач, а затем переходить к более простым.
  5. Обязательно нужно хвалить ребенка за его достижения и правильно выполненную работу.
  6. Для того чтобы мозг работал, детям нужно давать шанс самостоятельно решать примеры и задачи. Даже если в течение долгого времени он не может найти ответ, не нужно делать очевидных подсказок, пусть он найдет путь решения самостоятельно.
  7. Хорошо запоминать принцип математических решений помогают ассоциации, например, дроби можно представлять как кусочки одного торта или яблока.

Задания для 5 класса на тему «Натуральные числа»

Перед тем как познакомиться с обыкновенными и десятичными дробями, необходимо вспомнить что такое натуральные числа. Ими называются числа, используемые в повседневной жизни, например для счета предметов.

3адание 1

Определить, какое число стоит перед:

  1. 65;
  2. 756;
  3. 3 857;
  4. 45 940.

Определить, какое число на две единицы больше, чем:

  1. 404;
  2. 543;
  3. 6 348;
  4. 2 450.

3адание 2

Написать в виде словосочетаний следующие цифры:

  1. 547;
  2. 3 417;
  3. 814 261;
  4. 57 309.

3адание 3

Представить в виде чисел словосочетания:

  1. триста шестьдесят девять;
  2. одна тысяча двести девяносто три;
  3. десять тысяч шестьсот восемьдесят восемь;
  4. двести пятнадцать тысяч семьсот двадцать четыре.

3адания на тему «Сравнения натуральных чисел»

При помощи сравнения можно определить какое из чисел меньшее, а какое большее. Те что меньше, стоят при счете раньше, чем те, что больше.

3адание 1

Расставить 3наки «<«, «>» или «=» между числами:

  1. 18   32;
  2. 54   16;
  3. 347   524;
  4. 546   546;
  5. 675   23   433;
  6. 563   736   634;
  7. 392   450   81;
  8. 5    453    5    543;
  9. 949    3    432    563;
  10. 101   101    3455   456.

3адания на тему «Сложение, вычитания натуральных чисел»

3адание 1

Для того чтобы повторить сложение, вычитание чисел, а также порядок действий при вычислении сложного выражения, можно решить несколько выражений:

  1. 24 • (58 + 114) — 336;
  2. (563 — 260 : 4) + 61 • 37;
  3. 7 354 — (354 + 193 • 4) + (743 — 25);
  4. (1 623 + 570 : 30) — (3 540 — 413 • 7).

Ответы: 1) 3 792,  2) 2 755,  3) 5 510,  4) 993.

3аданиие 2

В саду росло 208 фруктовых деревьев. Яблонь и слив было 129 штук, а слив и груш — 115. Сколько яблонь росло в саду? Слив? Груш?

Решение: Если известно, что всего деревьев было 208, а яблонь и слив — 129, то можно вычислить количество груш.

1 действие: 208 — 129 = 79 (дер.) — грушевых.

Стало известно количество грушевых деревьев, значит можно узнать, сколько было слив.

2 действие: 115 — 79 = 36 (дер.) — сливовых.

После того, как стало известно, сколько было груш и слив, можно высчитать количество яблонь.

3 действие: 208 — (79 + 36) = 93 (дер.) — яблонь.

Ответ: В саду росло 93 яблони, 79 груш и 36 слив.

3адания на тему «Луч, прямая, отрезок»

Отрезком называется часть прямой ограниченная двумя точками, его длинной считается расстояние между крайними точками. Луч — это часть прямой, которая состоит из точки и всех других точек, лежащих по одну сторону от нее.

3адание 1

Начертите отрезок АВ, равный 12 см. Отметьте на нем точки по порядку С и D так, чтобы отрезок АС был равен 4 см, а СD — 6 см. Вычислите, чему равен отрезок DВ?

Ответ: 12 — (4 + 6) = 2 см.

3адание 2

Начертите прямую, произвольно отметьте на ней точку А, которая будет служить началом луча. 3атем начертите вторую прямую с точкой В так, чтобы она пересекала луч А. Место пересечения двух лучей можно обозначить точкой С. Напишите, чему равна длина получившихся отрезков АС и ВС.

3адание 3

Начертите произвольную прямую и отметьте на ней два точки А, В и С так, чтобы длина отрезка АВ была 7 см, а отрезка ВС — 4 см. Какова длина отрезка АС?

Ответ: 7 + 4 = 11 см.

3адания на тему «Уравнения»

Уравнением называется равенство, в котором один или несколько компонентов являются неизвестными.

3адание 1

Решить уравнения

  1.   84 • x = 588;
  2.   4 • (18 + x) = 96;
  3.   14x — 8x = 18;
  4.   50 + 6x — 31 = 4;
  5.   13х + 20 — 4х — 16 + х = 54.

Ответ: 1) x=7,  2) х=6,  3) х=3,  4) х=4,  5) х=5.

3адание 2

Насте 12 лет, что на 4 меньше, чем возраста Лены. Сколько лет Лене? Решить уравнением.

Решение: Возьмем возраст Лены за x, в таком случае можно составить уравнение:

x — 12 = 4,

х = 12 + 4,

х = 16.

Ответ: Лене 16 лет.

3адание 3

Велосипедист за 3 дня проехал 117 км. Какое расстояние он преодолел в первый день, если в последующие он проезжал на 4 км больше, чем в предыдущий

Решение: Первый день, который проехал велосипедист, возьмем за x. В таком случае второй день будет выглядеть как x + 4, а третий — х + 4 + 4. Можно составить уравнение х + х + 4 + х + 4 + 4 = 117.

х + х + 4 + х + 4 + 4 = 117,

3х + 12 = 117,

3х = 117 — 12,

3х = 105,

х = 105: 3,

х = 35.

Ответ: в первый день велосипедист проехал 35 км.

3адания на тему «Квадрат и куб числа»

Квадратом числа называется произведение этого числа самого на себя. Куб — произведение числа самого на себя два раза.

3адание 1

Найти квадрат чисел:

  1.  5;
  2.  9;
  3.  13;
  4.  45;
  5.  100;
  6.  381.

Ответ: 1) 25,  2) 81,  3) 169,  4) 2025,  5) 10 000,  6) 145 161.

Найти куб чисел:

  1.  2;
  2.  6;
  3.  11;
  4.  36;
  5.  78;
  6.  115.

Ответ: 1) 8,  2) 216, 3) 1 331,  4) 46 656,  5) 474 552,  6) 1 520 875.

3адание 2

Решить выражения:

  1. (7 + 4)2 • 6;
  2. 5 352 — (472 + 43);
  3. 612 — 7 • 23 + (20 — 4)2;
  4. ( 5 + 26 )2 — ( 6 + 12 )2 — 69;
  5. (25 — 16)3 + (36 — 33)2 ;
  6. ( 5 + 6 )3 — ( 5 + 24)2 + 727.

Ответ:  1) 726,  2) 3 079,  3) 3 921,  4) 568,  5) 738,  6) 1 217.

3адания на тему «Обыкновенные дроби»

3адание 1

  1. Паша собрал 34 гриба, из которых 16 грибов оказались подосиновиками. Какую часть от всех грибов составляют подосиновики? Ответ: 16/34.
  2. Всего в книге 124 страниц, из которых Толя прочитал ровно половину. Какую часть книги прочитал Толя? Ответ: 124 : 2 = 62 — страниц было прочитано, что составляет 62/124.
  3. Оля собрала всего 38 ягод, из которых 17 штук были малиной. Какую часть от общего количества составляют остальные ягоды? Ответ: 38 — 17 = 21 — остальные ягоды, которые составляют 21/38 от общего количества.

3адание 2

Начертите отрезок и разделите его на 13 равных частей. Отметьте на данном отрезке: 3/13, 6/13, 10/13.

3адание 3

  1. Полина собрала 36 листьев, из которых березовых составляет 6/18. Сколько березовых листьев собрала Полина? Ответ: 36 : 18 • 6 = 12.
  2. Папа был на рыбалке и поймал всего 45 рыбок, 8/15 было карасей. Сколько карасей поймал папа? Ответ: 45 : 15 • 8 = 24.
  3. Мама стряпала пирожки, всего их получилось 32 штуки. 5/8 от общего количества были с капустой. Сколько пирожков с капустой состряпала мама? Ответ: 32 : 8 • 5 = 20.

3адание 4

Сравнить дроби:

  1. 3/4 и 5/6;
  2. 12/13 и 7/26;
  3. 21/30 и 5/10;
  4. 7/20 и 8/12.

3адания на тему «Сложение и вычитание обыкновенных дробей»

3адание 1

Выполнить действия:

  1. 7⁄30 + 18⁄30 — 6⁄30;
  2. 3⁄19 + 8⁄19 — 4⁄19;
  3. 19⁄25 — ( 21⁄50 + 2⁄25 ) — 6⁄25;
  4. 13⁄76 — 11⁄76 + 49⁄76;
  5. 27⁄129 + ( 12⁄86 — 6⁄43 ) — 7⁄43.

Ответ: 1) 19/30,  2) 7/19,  3) 1/25,  4) 51/76,  5) 26/43.

3адание 2

Расстояние от дома до школы составляет 4/11 км, а от школы до магазина — 5/11 км. Чему равно расстояние от дома до магазина?

Решение: Для того чтобы найти сколько составляет весь путь, необходимо сложить расстояние от дома до школы и расстояние от школы до магазина 4/11 + 5/11 = 9/11 (км).

Ответ: Расстояние от дома до магазина составляет 9/11 км.

3адание 3

От рулона ткани первый раз отрезали 7/15 части, а затем еще 5/15, после чего в рулоне осталось 27 м. Сколько метров длина рулона?

Решение: В первую очередь нужно узнать какая часть рулона осталась.

1 действие: 15/15 — 7/15 — 5/15 = 3/15.

Можно сделать вывод, что 27 м составляет 3/15 части от всего рулона. Для того чтобы найти длину всего рулона ткани, необходимо узнать, сколько метров составляет 7/15 и 5/15 частей.

2 действие: 27 : 3 = 9 (м) — в 1 части.

3 действие: 9 • 7 = 63 (м) — составляет 7/15.

4 действие: 9 • 5 = 45 (м) — составляет 5/15.

После того, как стало известно какая длина у каждой из частей, можно вычислить всю длину рулона.

5 действие: 63 + 45 + 27 = 135 (м).

Ответ: длина рулона 135 метров.

3адания на тему «Умножение и деление обыкновенных дробей»

3адание 1

Выполнить действия:

  1. 8/13 • 1/2;
  2. 4/24 : 6/12;
  3. 3/21 • 7/9 : 2/4;
  4. 18/20 • 5/8 : 6/14;
  5. 2/5 : 15/30 • 9/11.

Ответ: 1) 8/26,  2) 1/3,  3) 2/9,  4) 21/16,  5) 36/55.

3адание 2

В первом ящике лежит 3/16 от всего количества яблок, а во втором в 3 раза больше. Какая часть от всего количества яблок лежит в обоих ящиках?

Решение: Сначала нужно узнать сколько яблок лежит во втором ящике.

1 действие: 3/16 •3 = 9/16 (яб.).

После того как стало известно сколько яблок лежит во втором ящике, можно узнать их общее количество.

2 действие: 3/16 + 9/16 = 12/16 = 3/4 (яб.)

Ответ: 3/4 части от общего количества яблок лежит в обоих ящиках.

3адание 3

3а два дня автомобиль поехал 6/10 пути. Известно, что во второй день он проделал путь в 4 раза больше, чем в первый. Cколько проехал автомобиль в первый и второй день?

Решение: Пусть первый день пути будет x, тогда можно составить уравнение x + х • 4 = 6/10.

1 действие:

х + х • 4 = 6/10;

5 • x = 6/10;

х = 6/10 : 5;

х = 3/25 — проехал автомобиль в 1 день.

После того как стало известно, какая часть пути была преодолена в 1 день, можно высчитать 2 день.

2 действие: 3/25 • 4 = 12/25.

Ответ: в первый день автомобиль проехал 3/25, а во второй — 12/25.

3адания на тему «Десятичные дроби»

3адание 1

Представить обыкновенные дроби в виде десятичных:

  1.  5/10;
  2.  13/100;
  3.  5/25;
  4.  164/1000;
  5.  45/250.

Ответ: 1) 0,5;  2) 1,03;  3) 0,2;  4) 16,004;  5) 0,18.

3адание 2

Начертите отрезок, разделите его на 6 равных частей. Отметьте на нем точки 0,3; 1,5; 2,2; 3,7; 4; 5,6.

3адания на тему «Сложение и вычитание десятичных дробей»

3адание 1

Выполнить действия:

  1.  28,3 + 4,45;
  2.  58,9 + 18,1;
  3.  0,48 + 6,8;
  4.  34,1 — 2,2;
  5.  39 — 20,3;
  6.  15,28 — 6,347.

Ответ: 1) 32,75;  2) 77;  3) 7,28;  4) 31,9;  5) 18,7;  6) 8,933.

3адание 2

В первый день катер проплыл 3,5 км, во второй на 4,31 км больше, а в третий — на 0,9 км меньше, чем во второй. Сколько всего км проплыл катер за 3 дня?

Решение: Необходимо вычислить, сколько катер проплыл в первый и во второй день.

1 действие: 3,5 + 4,31 = 7,81 (км) — проплыл во второй день.

2 действие: 7,81 — 0,9 = 6,91 (км) — проплыл в третий день.

После того как стало известно, сколько было пройдено за каждый день, можно узнать весь путь.

3 действие: 3,5 + 7,81 + 6,91 = 18,22 (км).

Ответ: за три дня катер проплыл 18,22 км.

3адания на тему «Умножение и деление десятичных дробей»

3адание 1

Выполнить действия:

  1.  5,6 • 8,34;
  2.  11,4 • 24,08;
  3.  0,56 • 34,9;
  4.  6,8 : 3,2;
  5.  33,021 : 12,23;
  6.  59,7204 : 6,26.

Ответ: 1) 46,704;  2) 274,512;  3) 19,544;  4) 2,125;  5) 2,7;  6) 9,54.

3адание 2

3агадано число, если его увеличить в 3 раза, а затем прибавить 2,16, то получиться 27,96. Какое число было загадано?

Решение: Пусть неизвестное число будет x, тогда можно составить уравнение х • 3 + 2,16 = 27,96.

1 действие:

х • 3 + 2,16 = 27,96;

3х = 27,96 — 2,16;

3х = 25,8;

х = 25,8 : 3;

х = 8,6.

Ответ: было загадано число 8,6.

3адание 3

Расстояние между населенными пунктами равно 53,7 км. Навстречу друг другу вышли два пешехода, скорость первого 3,8 км/ч, второго — 4,6 км/ч. Какое расстояние будет между ними через 2,7 часа?

Решение: Нужно вычислить, какое расстояние пешеходы пройдут за 2,7 часа.

1 действие: 3,8 • 2,7 = 10,26 (км) — пройдет первый пешеход.

2 действие: 4,6 • 2,7 = 12,42 (км) — пройдет второй пешеход.

После того как стало известно, сколько прошли пешеходы, можно высчитать, какой путь им еще нужно преодолеть до встречи друг с другом.

3 действие: 53,5 — 10,26 — 12,42 = 30,82 (км).

Ответ: через 2,7 часа между пешеходами будет 30,82 км.

 

Источник

Понравилась статья, поделись с друзьями!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code